Discovering hierarchical motion structure

نویسندگان

  • Samuel J. Gershman
  • Joshua B. Tenenbaum
  • Frank Jäkel
چکیده

Scenes filled with moving objects are often hierarchically organized: the motion of a migrating goose is nested within the flight pattern of its flock, the motion of a car is nested within the traffic pattern of other cars on the road, the motion of body parts are nested in the motion of the body. Humans perceive hierarchical structure even in stimuli with two or three moving dots. An influential theory of hierarchical motion perception holds that the visual system performs a "vector analysis" of moving objects, decomposing them into common and relative motions. However, this theory does not specify how to resolve ambiguity when a scene admits more than one vector analysis. We describe a Bayesian theory of vector analysis and show that it can account for classic results from dot motion experiments, as well as new experimental data. Our theory takes a step towards understanding how moving scenes are parsed into objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering and Analyzing the Intellectual Structure and Its Evolution in Core Journals of "Knowledge and Information Science" during 2004-2013

Purpose: This study aims to reveal the intellectual structure of Knowledge and Information Science and its evolution along with the review of journals subjective scope based on 6830 abstract in the ten core journal in the JCR 2013, over the ten years (2004-2013). Methodology: In this research, co-word and Correspondence analysis of 150 words -selected by tf-idf weight- were done after parametri...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Automatic Construction of Hierarchical Hidden Markov Model Structure for Discovering Semantic Patterns in Motion Data

The objective of this paper is to automatically build a Hierarchical Hidden Markov Model (HHMM) (Fine et al., 1998) structure to detect semantic patterns from data with an unknown structure by exploring the natural hierarchical decomposition embedded in the data. The problem is important for effective motion data representation and analysis in a variety of applications: film and game making, mi...

متن کامل

Discovering Non-binary Hierarchical Structures with Bayesian Rose Trees

Rich hierarchical structures are common across many disciplines, making the discovery of hierarchies a fundamental exploratory data analysis and unsupervised learning problem. Applications with natural hierarchical structure include topic hierarchies in text (Blei et al. 2010), phylogenies in evolutionary biology (Felsenstein 2003), hierarchical community structures in social networks (Girvan a...

متن کامل

Automated Hierarchy Discovery for Planning in Partially Observable Domains

Planning in partially observable domains is a notoriously difficult problem. However, in many real-world scenarios, planning can be simplified by decomposing the task into a hierarchy of smaller planning problems which, can then be solved independently of one another. Several approaches, mainly dealing with fully observable domains, have been proposed to optimize a plan that decomposes accordin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2016